

Enhancing Sampling Protocol for Point Cloud Classification Against Corruptions

Chongshou Li^{1,2}, Pin Tang^{1,2}, Tianrui Li^{1,2}, Yuheng Liu¹ and Xinke Li*³

1 Southwest Jiaotong University 2 Engineering Research Center of Sustainable Urban Intelligent Transportation 3 City University of Hong Kong

* Corresphonding Author

Introduction

Key Challenges of 3D Point Cloud Learning

Autonomous Driving

Medical Treatment

Challenges in Real-World Applications

Limitations of Existing Point Cloud Sampling Protocol

Contributions

- Propose an alternative protocol to enhance the robustness of point cloud learning.
- Develop three learning-free techniques as the key of protocol: point reweighting, local-global balanced sampling, and local-geometry-preserved interpolation.
- Extensive experiments are conducted on synthesis and real corrupted 3D point cloud datasets.

Method

- Learning-free and architecture-agnostic, requiring no extra learning or modification to the network
- Enhance the corrupted data in both training & testing stages
- Re-structure point cloud sampling as two sub-processes: Key points sampling and Full points resampling

Results

- ✓ PointSP can provide a significant improvement across various datasets and corruptions.
- ✓ PointSP can effectively enhance not only classification but also part segmentation.

Visualizations

